F(x)=x^2-3x+4,F(-2)=

Simple and best practice solution for F(x)=x^2-3x+4,F(-2)= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for F(x)=x^2-3x+4,F(-2)= equation:



(F)=F^2-3F+4.(-2)=
We move all terms to the left:
(F)-(F^2-3F+4.(-2))=0
We calculate terms in parentheses: -(F^2-3F+4.(-2)), so:
F^2-3F+4.(-2)
We add all the numbers together, and all the variables
F^2-3F-8
Back to the equation:
-(F^2-3F-8)
We get rid of parentheses
-F^2+F+3F+8=0
We add all the numbers together, and all the variables
-1F^2+4F+8=0
a = -1; b = 4; c = +8;
Δ = b2-4ac
Δ = 42-4·(-1)·8
Δ = 48
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{48}=\sqrt{16*3}=\sqrt{16}*\sqrt{3}=4\sqrt{3}$
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{3}}{2*-1}=\frac{-4-4\sqrt{3}}{-2} $
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{3}}{2*-1}=\frac{-4+4\sqrt{3}}{-2} $

See similar equations:

| 9z+45=180 | | 5x-14x+2=14x | | 80+3x=180 | | 6(-2)-3x=-75 | | x/9=-7=-7 | | 3(x+2)=8-2(x-1) | | 9q+10=20 | | m+14=18+m | | 3a+4a+2a=180 | | 2(x-7)-6=16 | | z/8+4=7 | | k-(-11)=12 | | -3+r=-18 | | −62,500=0.25y | | 8+3x-2=10+4x-10 | | 2x+15-21=47 | | 7w+5=3w+15 | | 4r-7=55 | | F(7)=6x-1/ | | 4(x-1)=12-2(2x-2) | | 32=x²-2² | | 51=y=6=74 | | 77=3u+17 | | 4(6+n=(4*6)+(4*8) | | 7x+5x=144 | | 2^2+2y-24=0 | | 14=-3/8x+20 | | 2+3(4x+4)=62 | | 6²=f²-13 | | 4x-3x+x=10 | | (x-2)2-6=19 | | 4-2b=12 |

Equations solver categories